Algebra 2

5-01 nth Roots and Rational Exponents

Root

- If $a^{2}=b$, then a is a \qquad $\left(2^{\text {nd }}\right)$ root of b.
- If $a^{n}=b$, then a is the \qquad root of b.

Parts of a radical

Rational Exponents

$$
\begin{gathered}
b^{1 / n}=\sqrt[n]{b} \\
b^{m / n}=\sqrt[n]{b^{m}}=(\sqrt[n]{b})^{m}
\end{gathered}
$$

Evaluate
$36^{1 / 2}$
$\left(\frac{1}{8}\right)^{-\frac{1}{3}}$
$27^{\frac{4}{3}}$

Find roots with a calculator

- The \sqrt{x} or $\sqrt{ }$ key is for \qquad roots (either radicand then key or key then radicand depending on calculator)
- The $\sqrt[x]{y}$ or $\sqrt[y]{x}$ or $\sqrt[x]{ }$ is for \qquad root (index \rightarrow key \rightarrow radicand OR radicand \rightarrow key \rightarrow index)
Try it with $\sqrt[4]{100}$

Steps to solve an equation with an exponent

1. \qquad the exponent term
2. Take the \qquad of both sides where the index is the \qquad

- If the index is \qquad , put \qquad

3. \qquad
4. \qquad your answers!!!

Solve. Round to two decimal places, if necessary.
$5 x^{3}=320$

$$
(x+3)^{4}=24
$$

